
How to boost Test Implementation Speed by 10x?

Testing As A Service

mesutdurukal

AGENDA
Preparation

● Problem Definition
● Requirement Analysis

Implementation

Serve

● Maintenance
● Support

Chapter One

Preparation

● No standard across multiple teams/projects
● Struggling with problems,

which were already solved somewhere else
● Duplication
● Code quality
● Reliability issues
● No monitoring

Problem Statement

cy.get(button + ':visible')
 .click()
 .invoke('text')
 .as('labelOnButton');
cy.wait(2000);
cy.get('@labelOnButton')

.then((actualLabel)=> {
expect(actualLabel)
.to
.equal('25 k’)})

Kayla Leo Susan

cy.get(button +
':visible')
 .click()
 .should('contain',

'25 k’);

cy.get(button)
 .should('be.visible')
 .click()
 .should('have.text',

'25 k’);

Rob

cy.get(button +
':visible')

.click()

.then((button)=>{
expect(button
.text())
.to
.equal('25k’);})

myFramework.checkText(filterButton, '25 k')

● Developing standards.
● Avoid any antipatterns.
● Remove duplication.
● Provide solutions to common problems.
● Provide an opportunity for monitoring
● Dashboards, queries, filters, charts

Targets

Roadmap

● Objectives & Key Results
● Requirements definition
● Prioritization

Objectives
and Key Metrics

QUALITY ASSURANCE

Improve Confidence
Quantity: Coverage
Quality: Escaped Bugs

Support Fast Delivery
Automation
Execution duration
Implementation
False alarms
Test fix time

Test coverage 90%

Number of critical incidents <3

Automation coverage 100%

Total regression duration <10 mins

False failures <5%

Average test fix time < 24 hours

Average test implementation time < 1 sprint

● Safari Automation
● No infrastructure for automated regression testing
● No proper Jira workflow for bugs
● Impossibly testable cases
● Unclear requirements / features
● Infrastructure instabilities
● Errors raised by the SUT
● Cross domain redirection
● Code changes to selectors / missing selectors
● Proctor tests roll ups breaking automation
● Test flakiness
● Escaped bugs
● Share tests between similar products
● Use same approach for tests within a project
● Keeping account profile data untainted
● API testing framework compatibility

Challenges

● Testing BE and/or FE together should be supported
● Rest API and GraphQL testing should be supported
● API testing should support authenticated requests
● FE testing modules should support Cookie operations
● Including individual or a group of tests to the suite
● Excluding tests from the executions should be possible.
● Requests modification/interception should be supported
● Response modification/interception should be supported
● Test Input Management should be in place
● Automatic bug reports after failures
● Slack Notifications after executions
● Evidence collection
● Monitoring dashboards
● There should be Hard fail and soft fail modes
● Tests should be easily integrable to Gitlab/Github
● Tests should be executable on multi-branch pipelines
● Tests should be executable on different branches
● Tests should be executable after commits/before merges

● Cross domain testing should be supported
● Clean up
● Mocking should be supported
● Various browsers should be supported
● Mobile testing should be supported (native app)
● User manual should be generated
● It should be easy to write new tests
● Parallel execution should be supported
● Test flakiness should be detected and reduced
● Retry (line/whole test) strategy
● No sensitive data should be revealed
● Resources should be configurable
● Static code analysis (linters, servers)
● Dependencies should be auto-updated?
● Accessibility testing components
● Tests should have priorities
● Async requests should be handled properly.

Requirements

Chapter Two

Implementation

● Community Research
● Check other benchmarks
● Self experience
● Decision Criteria

○ Speed
○ Ease of coding
○ Flexibility
○ Documentation & Support
○ Licensing / Cost
○ Feature Compatibility

Benchmarking

Cypress

Playwright

Testcafe
Selenium

Nightwatch

Flexible
Integrity
Scalable
Priority

Understandable
Transparent
Documentation
Troubleshooting

Reliable
Coverage
Non Disruptive
Testability

Performance
Resource consumption
Multiple execution
Versioning

Quality Dimensions

Flexible: Configurable, Cross Platforms

Scalable/Portable: Parallelization, Desktop/Mobile Goal Oriented: Priorities

Integrity: Can integrate to CI platforms

Understandable

Documentation: Read Me, Manuals Troubleshooting, Evidences: SS, Video

Transparent, Visible

Reliable

Nondisruptive Testability: Mocks

Coverage

Performance

Multiple Execution Versioning

Resource Consumption

Chapter Three

Service

Speed Up Implementation
● Define the locators

○ Find the parent of an element
○ Find siblings and children

● Implement test steps
○ Wait for responses, conditions
○ Parse Promises

page.locator(selector).click();
vs
page.click(page.locator(selector));

page.locator(':text("label")');
vs
page.getElementsByName("label");

recentSearchesTitle().locator("xpath=..");
vs
page.locator("article:has(" +
recentSearchesTitle() + ")")

Eventually, looks like:

Measure the effect!
Average:

2 hours locators

3 hours
implementation

30 mins

Monitoring

TRAINING

● Observe Problems, Improvement Areas
● Requirements
● Architecture
● Implementation
● Outcome
● Monitoring

Wrap Up

mesutdurukal

